Effects of a wheelchair stabilization and safety system on spatiotemporal and kinetic parameters during motorized treadmill propulsion

Félix Chénier1,2, Cindy Gauthier1,2, Dany Gagnon1,2
1. Laboratoire de pathokinésiologie, Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal (IRGLM)
2. École de réadaptation, Université de Montréal

INTRODUCTION
• There is growing interest to realize wheelchair propulsion biomechanical assessment on motorized treadmills1.
• To ensure users' safety, wheelchair is often secured on both sides with two elastic bands that constrain lateral deviation without affecting anteroposterior movement2 (Fig. 1 - TS).
• It is unknown if such devices affect the wheelchair dynamics and, consequently, the propulsion biomechanics.

METHODS
• 7 experienced wheelchair users (T12-B, T6-D, T5-A, T4-A, C7-B, cerebral palsy, muscular distrophy) propelled their own wheelchair at 1 m/s in three conditions in a random order (Fig. 1):
 • Overground (OG)
 • Treadmill Free (TF).
 • Treadmill Secured (TS)
• OG setup used the same rubber flooring as TF and TS.
• Cadence, push/recovery time, total/tangential forces and power were measured for every participants on 10 consecutive pushes in steady-state propulsion.
• Parameters were compared between setups using an ANOVA for repeated measures, followed by Student t-tests for repeated measures with Bonferroni correction, with $\alpha = 0.05$.

RESULTS
• Significant differences (*) were found in spatiotemporal parameters (Fig. 2), but not in kinetic parameters (Fig. 3).
• Cadence was significantly higher on TF than OG.
• Recovery time was significantly lower on TF than OG.
• Although not significantly different, forces and power were higher on TF than OG and TS.

CONCLUSIONS
• Higher cadence on treadmill than OG is consistent with literature2.
• Propelling on treadmill with the wheelchair attached with elastic bands (TS) seems to be more representative of overground propulsion (OG) than propelling with the wheelchair free (TF).
• This suggests that other factors (fear, steering, etc.), aside from the elastic bands, may also alter propulsion biomechanics.

REFERENCES